
ORE Scripted Trade Module

Quaternion Risk Management

12 February 2024

1

Document History

Date Author Comment
16-04-2019 Peter Caspers initial version
24-07-2019 Peter Caspers phase 1 draft
02-10-2019 Peter Caspers add interest rate indices
21-10-2019 Peter Caspers add SORT and PERMUTE functions
29-10-2019 Peter Caspers add product tag, local vol model
28-11-2019 Peter Caspers add LOGPAY function and product tag
05-12-2019 Peter Caspers add free style xml
06-01-2020 Peter Caspers add HISTFIXING function
09-01-2020 Peter Caspers add FWDCOMP function
16-01-2020 Peter Caspers updates for ScheduleCoarsening, GaussianCam

and LocalVol
13-02-2020 Peter Caspers updates for Commodity
22-04-2020 Peter Caspers add ABOVEPROB, BELOWPROB functions
18-08-2020 Peter Caspers add DATEINDEX function
21-09-2020 Peter Caspers add specifics on AMC
06-10-2020 Peter Caspers extended version of LOGPAY() function
03-12-2020 Peter Caspers additions for FD and calibration
01-07-2021 Peter Caspers add case d1 > d2 for ABOVEPROB, BELOW-

PROB
13-09-2021 Nathaniel Volfango update Index section and add note on payment

currency
11-02-2022 Peter Caspers extend FWDCOMP, add FWDAVG function

(breaking change)
22-06-2023 Peter Caspers add config flags for external devices
12-02-2024 Peter Caspers additions for FD GaussianCam model

2

Breaking Changes

Date Breaking Change
11-02-2022 If the (optional) spread is given in FWDCOMP(), a gearing must be

given too

3

Contents

1 Summary 7

2 Trade Representation 7
2.1 General Structure . 7
2.2 Script Node . 9
2.3 Data Node . 11
2.4 Event . 11
2.5 Number . 12
2.6 Index . 12
2.7 Currency . 15
2.8 Daycounter . 15
2.9 Compact Trade XML . 15
2.10 Payment Currency . 17
2.11 Convenience Trade Wrappers . 18
2.12 SIMM product type deduction . 18
2.13 Scripting and AMC . 18

3 Scripting Language 20
3.1 Whitespace . 20
3.2 Keywords . 20
3.3 Variables . 20
3.4 Arrays, SIZE operator . 22
3.5 Sorting Arrays: SORT and PERMUTE instructions 22
3.6 Function DATEINDEX . 23
3.7 Instructions . 23
3.8 Index evaluation . 23
3.9 Comparisons == and != . 24
3.10 Comparisons <, <=, >, >= . 24
3.11 Operations +, -, *, / . 24
3.12 Assignment = . 24
3.13 Logical Operators AND, OR, NOT . 24
3.14 Conditionals: IF ... THEN ... ELSE ... 25
3.15 Loops: FOR ... IN ... DO . 25
3.16 Special variable: TODAY . 26
3.17 Checks: REQUIRE . 26
3.18 Functions min, max, pow . 26
3.19 Functions -, abs, exp, ln, sqrt . 26
3.20 Functions normalPdf, normalCdf . 26
3.21 Function black . 26
3.22 Function dcf . 26
3.23 Function days . 27
3.24 Function PAY . 27
3.25 Function LOGPAY . 27
3.26 Function NPV, NPVMEM . 28
3.27 Function HISTFIXING . 29
3.28 Function DISCOUNT . 29
3.29 Functions FWDCOMP and FWDAVG . 29

4

3.30 Functions ABOVEPROB, BELOWPROB . 30

4 Models 31
4.1 Pricing Engine Configuration . 31
4.2 Product Tags und pricing engine configuration 35
4.3 BlackScholes model . 35
4.4 LocalVolDupire, LocallVolAndreasenHuge models 35
4.5 GaussianCam models . 36
4.6 Base Currency Determination . 36
4.7 Grid Coarsening . 37
4.8 Calibration . 37
4.9 FX tags and correlation curves . 38

5 Error Diagnostics and Debugging 38
5.1 Errors during parsing . 38
5.2 Errors during runtime . 39
5.3 Tracing . 39

6 Implementation Details 40
6.1 Static Analysis . 40
6.2 Script Parser . 41
6.3 Script Analyzer . 41
6.4 Script Engine . 41
6.5 Model . 41

5

c○ 2019 Quaternion Risk Management Limited. All rights reserved. Quaternion® is
a trademark of Quaternion Risk Management Limited and is also registered at the
UK Intellectual Property Office and the U.S. Patent and Trademark Office. All other
trademarks are the property of their respective owners. Open Source Risk Engine c○

(ORE) is sponsored by Quaternion Risk Management Limited.

6

1 Summary

This document describes the ORE+ trade scripting module.

2 Trade Representation

2.1 General Structure

A scripted trade comprises

• external data that parametrises the payoff script

• the payoff script

In the following example, a plain vanilla equity call or put option is described by provid-
ing the expiry and settlement date, the strike, a put / call indicator and the underlying
index as external data in the Data node, and the payoff script is referenced by the
ScriptName node:

<Trade id="VanillaOption">

<TradeType>ScriptedTrade</TradeType>

<Envelope/>

<ScriptedTradeData>

<ScriptName>EuropeanOption</ScriptName>

<Data>

<Event>

<Name>Expiry</Name>

<Value>2020-02-09</Value>

</Event>

<Event>

<Name>Settlement</Name>

<Value>2020-02-15</Value>

</Event>

<Number>

<Name>Strike</Name>

<Value>1200</Value>

</Number>

<Number>

<Name>PutCall</Name>

<Value>1</Value>

</Number>

<Index>

<Name>Underlying</Name>

<Value>EQ-RIC:.SPX</Value>

</Index>

<Currency>

<Name>PayCcy</Name>

<Value>USD</Value>

</Currency>

</Data>

</ScriptedTradeData>

</Trade>

The script itself is defined in a script library, which is part of the static data setup of
the application like bond or credit index static data, as follows

7

<ScriptLibrary>

<Script>

<Name>EuropeanOption</Name>

<ProductTag>SingleAssetOption({AssetClass})</ProductTag>

<Script>

<Code><![CDATA[

Option = PAY(max(PutCall * (Underlying(Expiry) - Strike), 0),

Expiry, Settlement, PayCcy);

]]> </Code>

<NPV>Option</NPV>

<Results>

<Result>ExerciseProbability</Result>

</Results>

</Script>

</Script>

<Script>

...

</Script>

...

</ScriptLibrary>

Many scripted trades can thus share the same script, and the payoff scripts can be
managed and maintained centrally. Each scipt defines an exotic product type. And
adding a product type to the library is a configuration rather than a code release change.
For the ORE CLI the script library can be loaded by specifying the (optional) scriptLi-
brary parameter:

<ORE>

<Setup>

<Parameter name="asofDate">2016-02-05</Parameter>

...

<Parameter name="scriptLibrary">scriptlibrary.xml</Parameter>

</Setup>

...

</ORE>

In the pricer app the script library can be loaded by specifying the (optional) script library
parameter, e.g. in config.txt

asof=2018-12-31

base_currency=USD

trade=scripted_fx_onetouch_option.xml

script_library=scriptlibrary.xml

Alternatively, the script can be inlined in the trade representation:

<Trade id="VanillaOption">

<TradeType>ScriptedTrade</TradeType>

<Envelope/>

<ScriptedTradeData>

<ProductTag>SingleAssetOption({AssetClass})</ProductTag>

<Script>

<Code><![CDATA[

Option = PAY(max(PutCall * (Underlying(Expiry) - Strike), 0),

Expiry, Settlement, PayCcy);

]]> </Code>

<NPV>Option</NPV>

8

<Results>

<Result>ExerciseProbability</Result>

<Results>

</Script>

<Data>

...

</Data>

</ScriptedTradeData>

</Trade>

The product tag node is optional both for scripts in the library and inlined script and
used for the assignment of a pricing model and its parameters, see 4.2

2.2 Script Node

A script is described by

• the script code (in the Code node)

• the name of the variable used to populate the instrument’s NPV result field (in
the NPV node)

• an optional list of variables used to populate the additional result map in an
instrument

• an optional specification of calibration strikes, see 4.8 for details

• an optional ScheduleCoarsening node specifying which schedules can be coarsened,
see 4.7 for details on this

• an optional NewSchedules node specifying new schedules should be created before
the script execution, this node contains

– Name: a name for the new schedule to be created

– Operation: an operation to perform, only Join is supported currently

– Schedules: a list of source schedules

• an optional StickyCloseOutStates node specifying variables that should be held
constant during an AMC exposure run with sticky close-out mpor mode, usually
a list of exercise / barrier hit indicators, see 2.13 for more details on this

• an optional ConditionalExpectation node specifying a filter on model states to
be used in NPV() and NPVMEM() functions. The filter is specified as a subn-
ode ModelStates with one or several ModelState subnodes “Asset” (use EQ, FX,
COMM components), “IR” (use interest rate states), “INF” (use inflation states).
Applies to GaussianCam model only. If left empty, the full model state is used for
conditional npv calculation.

Several script nodes can be used in parallel and are distinguished by an optional purpose
attribute then. There must always be a script with empty purpose. Special purposes
are

9

• FD: If a script with purpose FD is available this is preferred over the default script
when an FD engine is built (as opposed to an MC engine)

• AMC: If a script with purpose AMC is available this is preferred over the default
script when an AMC engine is built, i.e. an engine used within the AMC analytics
type. See 2.13 for more details.

The keys in the instrument’s additional results map are by default identical to the vari-
able names used to populate them. They can be given a different name using the optional
rename attribute. The variables can be scalars or arrays of any type which will be trans-
lated to QuantLib instrument result types double (for NUMBER), QuantLib::Date (for
EVENT), string (for INDEX, CURRENCY, DAYCOUNTER) for scalars or vectors
thereof for arrays.
The following additional results have a special meaning.

• currentNotional a number representing the current notional of a trade, if given
this is displayed in the NPV report and - importantly - required as an input for
trades which fall under the IM Schedule approach

• notionalCurrency the currency in which the currentNotional is given

<Script purpose="">

<Code><![CDATA[

NUMBER Payoff, ExerciseProbability;

Payoff = PutCall * (Underlying(Expiry) - Strike);

Option = LongShort * Quantity * PAY(max(Payoff, 0), Expiry, Settlement, PayCcy);

IF Payoff > 0.0 THEN

ExerciseProbability = 1;

END;

]]> </Code>

<NPV>Option</NPV>

<Results>

<Result>ExerciseProbability</Result>

<Result>currentNotional</Result>

<Result rename="notionalCurrency">PayCcy</Result>

</Results>

<CalibrationSpec>

<Calibration>

<Index>Underlying</Index>

<Strikes>

<Strike>Strike</Strike>

</Strikes>

</Calibration>

</CalibrationSpec>

<ScheduleCoarsening/>

<NewSchedules>

<NewSchedule>

<Name>ExerciseAndSimDates</Name>

<Operation>Join</Operation>

<Schedules>

<Schedule>_AMC_SimDates</Schedule>

<Schedule>ExerciseDates</Schedule>

</Schedules>

</NewSchedule>

</Newschedules>

<StickyCloseOutStates>

10

<StickyCLoseOutState>ExerciseIndicator</StickyCloseOutState>

</StickyCloseOutstates>

<ConditionalExpectation>

<ModelStates>

<ModelState>Asset</ModelState>

</ModelStates>

</ConditionalExpectation>

</Script>

2.3 Data Node

The Data node contains definitions for external variables that can be used in the script.
These variables can either be scalars or one-dimensional arrays with fixed size. The
supported data types are

• Event: a date

• Number: a real number

• Counter: an integer

• Index: an EQ, FX or COMM index

• Currency: a currency

• Daycounter: a day count convention

2.4 Event

An event is defined either as a scalar

<Event>

<Name>Expiry</Name>

<Value>2020-02-09</Value>

</Event>

or as an array of dates using ORE’s ScheduleData node, e.g.

<Event>

<Name>ExerciseDates</Name>

<ScheduleData>

<Rules>

<StartDate>2016-02-06</StartDate>

<EndDate>2016-05-06</EndDate>

<Tenor>1D</Tenor>

<Calendar>TARGET,US</Calendar>

<Convention>F</Convention>

<Rule>Forward</Rule>

</Rules>

</ScheduleData>

</Event>

using a rule based schedule or

11

<Event>

<Name>ValuationDates</Name>

<ScheduleData>

<Dates>

<Dates>

<Date>2018-03-10</Date>

<Date>2019-03-10</Date>

<Date>2020-03-10</Date>

<Date>2021-03-10</Date>

<Date>2022-03-10</Date>

<Date>2023-03-10</Date>

<Date>2024-03-11</Date>

</Dates>

</Dates>

</ScheduleData>

</Event>

using a list of dates. An array of dates can also be deduced from another, previously
defined array by specifying a shift rule which is useful e.g. to generate fixing or payment
schedules from accrual schedules, or notification and settlement schedules from exercise
date schedules. Example:

<Event>

<Name>FixingDates</Name>

<DerivedSchedule>

<BaseSchedule>AccrualDates</BaseSchedule>

<Shift>-2D</Shift>

<Calendar>TARGET</Calendar>

<Convention>MF</Convention>

</DerivedSchedule>

</Event>

2.5 Number

A scalar number is defined as

<Number>

<Name>Strike</Name>

<Value>2147.56</Value>

</Number>

and likewise an array of numbers as

<Number>

<Name>EquityNotionalAmount</Name>

<Values>

<Value>100000000</Value>

<Value>90000000</Value>

<Value>80000000</Value>

</Values>

</Number>

2.6 Index

Indices are defined as

12

<Index>

<Name>Underlying</Name>

<Value>EQ-RIC:.SPX</Value>

</Index>

in case of a scalar and

<Index>

<Name>Underlyings</Name>

<Values>

<Value>EQ-UND1</Value>

<Value>EQ-UND2</Value>

<Value>EQ-UND3</Value>

<Value>EQ-UND4</Value>

<Value>EQ-UND5</Value>

</Values>

</Index>

in case of a vector. Currently, Equity, FX, Commodity, Interest Rate and Inflation in-
dices as well as generic indices are supported, the naming convention follows the standard
ORE conventions, i.e.

• Equity: These are declared based on identifier type

– EQ-ISIN:{Name}:{Currency}:{Exchange} for ISIN equities,
e.g. EQ-ISIN:NL0000852580:EUR:XAMS,

– EQ-RIC:{Name} for RIC equities, e.g. EQ-RIC:.SPX,

– EQ-FIGI:{Name} for FIGI equities, e.g. EQ-FIGI:BBG000BLNNV0,

– EQ-BBG:{Name} for BBG equities, e.g. EQ-BBG:BARC LN Equity.

• FX: FX-SOURCE-CCY1-CCY2 with foreign currency CCY1 and domestic currency
CCY2. The order of the currencies here is important as they will have different
meanings. For a natural payoff, CCY2 must correspond to the instrument’s pay-
ment currency. Otherwise, we have a quanto payoff. See section 2.10 for more
information.

• Commodity: These are declared as COMM-{Name}, with possible extensions as fol-
lows (see below also for more information on the meanings of the extensions to the
commodity indices):

– COMM-NYMEX:CL (spot),

– COMM-NYMEX:CL-2020-09 (future with expiry 01 Sep 2020),

– COMM-NYMEX:CL-2020-09-15 (future with expiry 15 Sep 2020).

• Interest Rate: These are declared as CCY-INDEX-TENOR, e.g. EUR-EURIBOR-6M,
EUR-CMS-10Y.

• Inflation: These are declared as {Name}, with possible extensions as follows(see
below also for more information on the meanings of the extensions to the inflation
indices):

– EUHICPXT (constant/non-interpolated),

13

– EUHICPXT#F (flat interpolation),

– EUHICPXT#L (linear interpolation).

• Generic: These are declared as GENERIC-{Name}.

Notice that generic indices only provide historical fixings.
Within the scripting framework there are additional ways to reference commodity indices
in a more dynamical fashion: When evaluating a commodity index using the index
evaluation operator (see 3.8) as in

CommodityUnderlying(ObservationDate)

for

• a variable of the form COMM-{Name}#N, the index will be resolved to the N +
1th future with expiry greater than ObservationDate for the given commodity
underlying, N ≥ 0. The parameter N corresponds to the field FutureMonthOffset

commonly used in commodity trade xml schemas

• the above form can take one or two additional parameters COMM-{Name}#N#D or
COMM-{Name}#N#D#{Cal} where D corresponds to DeliveryRollDays and Cal is
the calendar used to roll the observation date forward before the next future expiry
is looked up. If Cal is not given, it defaults to the null calendar (no holidays).

• a variable of the form COMM-{Name}!N, the index will be resolved to the Nth future
relative to the month and year of the ObservationDate.

In general, if a commodity future is referenced, the observation date should be be less
or equal to the expiry date of the future, since no historical fixing will in general be
available after the future expiry date. In the future-looking simulation the observation
of an expired future is possible, in this case the (model) value of the future is kept
constant at its value at the expiry date for observation dates after the expiry date.
When evaluating an inflation index as in

CPIIndex(FixingDate)

the variable CPIIndex can be given in the following ways:

• a variable of the form EUHICPXT will evaluate the standard ORE inflation index,
which is non-interpolated. This means the result will be constant for all Fixing-
Dates in an inflation period (i.e. usually constant for a calendar month)

• a variable of the form EUHICPXT#F, i.e. an ORE inflation index name followed by #F
indicating a flat interpolation of the index, this form is equivalent to the previous
form making the interpolation mode explicit as “flat”

• a variable of the form EUHICPXT#L where the suffix #L indicates linear interpolation
of the index, i.e. the result will be the interpolated fixing between the usually
monthly inflation index fixings

The use of the interpolation extensions is deprecated. Interpolation of fixings should
be handled in the payoff script. The CPI indices are forecasting a flat fixing for given
the inflation period. The use of interpolation is still supported but will be eventually
removed in a later release.

14

2.7 Currency

A scalar currency variable is defined as

<Currency>

<Name>PayCcy</Name>

<Value>USD</Value>

</Currency>

and an array of currencies as

<Currency>

<Name>BasketCurrencies</Name>

<Values>

<Value>USD</Value>

<Value>GBP</Value>

<Value>JPY</Value>

</Value>

</Currency>

2.8 Daycounter

A scalar day count convention variable is defined as

<Daycounter>

<Name>AccrualDayCounter</Name>

<Value>Actual/360</Value>

</Daycounter>

and an array of day counters as

<Daycounter>

<Name>LegAccrualDayCounters</Name>

<Values>

<Value>30/360</Value>

<Value>Actual/360</Value>

</Value>

</Currency>

2.9 Compact Trade XML

In addition to the trade xml described in 2.1, 2.2, 2.3 we support an alternative, more
compact, format where the variable names are derived from the node names and the
type is given by an attribute. The script must sit in the script library in this case (i.e.
inlining is not possible) and is referenced via a name derived from the root node of the
trade data. Consider the following example of a one touch option in the original format:

<Trade id="SCRIPTED_FX_ONE-TOUCH_OPTION">

<TradeType>ScriptedTrade</TradeType>

<Envelope>

<CounterParty>CPTY_A</CounterParty>

<NettingSetId>CPTY_A</NettingSetId>

<AdditionalFields/>

</Envelope>

<ScriptedTradeData>

<ScriptName>OneTouchOption</ScriptName>

15

<Data>

<Event>

<Name>Settlement</Name>

<Value>2020-08-01</Value>

</Event>

<Event>

<Name>ObservationDates</Name>

<ScheduleData>

<Rules>

<StartDate>2018-12-28</StartDate>

<EndDate>2020-08-01</EndDate>

<Tenor>1D</Tenor>

<Calendar>US</Calendar>

<Convention>U</Convention>

<TermConvention>U</TermConvention>

<Rule>Forward</Rule>

</Rules>

</ScheduleData>

<ApplyCoarsening>true</ApplyCoarsening>

</Event>

<Number>

<Name>BarrierLevel</Name>

<Value>0.009</Value>

</Number>

<Number>

<Name>Type</Name>

<Value>-1</Value>

</Number>

<Number>

<Name>LongShort</Name>

<Value>1</Value>

</Number>

<Number>

<Name>Amount</Name>

<Value>10000000</Value>

</Number>

<Currency>

<Name>PayCcy</Name>

<Value>USD</Value>

</Currency>

<Index>

<Name>Underlying</Name>

<Value>FX-TR20H-USD-JPY</Value>

</Index>

</Data>

</ScriptedTradeData>

</Trade>

In the compact format the same trade looks like this:

<Trade id="SCRIPTED_FX_ONE-TOUCH_OPTION">

<TradeType>ScriptedTrade</TradeType>

<Envelope>

<CounterParty>CPTY_A</CounterParty>

<NettingSetId>CPTY_A</NettingSetId>

<AdditionalFields/>

</Envelope>

<OneTouchOptionData>

<Settlement type="event">2020-08-01</Settlement>

16

<ObservationDates type="event">

<ScheduleData>

<Rules>

<StartDate>2018-12-28</StartDate>

<EndDate>2020-08-01</EndDate>

<Tenor>1D</Tenor>

<Calendar>US</Calendar>

<Convention>U</Convention>

<TermConvention>U</TermConvention>

<Rule>Forward</Rule>

</Rules>

</ScheduleData>

<ApplyCoarsening>true</ApplyCoarsening>

</ObservationDates>

<BarrierLevel type="number">0.009</BarrierLevel>

<BarrierType type="barrierType">DownIn</BarrierType>

<LongShort type="longShort">Long</LongShort>

<Amount type="number">10000000</Amount>

<PayCcy type="currency">USD</PayCcy>

<Underlying type="index">FX-TR20H-USD-JPY</Underlying>

</OneTouchOptionData>

</Trade>

The supported types that must be specified in the type attribute are number, event,
currency, dayCounter and index. In addition we support some custom types that are
mapped to numbers internally and allow for a more natural representation of the trade:

• bool with a mapping true 7→ 1, false 7→ -1

• optionType with a mapping Call 7→ 1, Put 7→ -1, Cap 7→ 1, Floor 7→ -1

• longShort with a mapping Long 7→ 1, Short 7→ -1

• barrierType with a mapping DownIn 7→ 1, UpIn 7→ 2, DownOut 7→ 3, UpOut 7→ 4

Arrays of events are specified as in the example above (ObservationDates), for the other
types the values are listed in value tags, e.g. an array of numbers is declared as

<MyNumberArray type="number">

<Value>100.0</Value>

<Value>200.0</Value>

<Value>200.0</Value>

</MyNumberArray>

2.10 Payment Currency

The payoffs described in the Trade Specific Data for scripted trades usually involve a
payment currency. Unless stated otherwise, this currency represents the natural payoff
currency, i.e.

• for equity and commodity underlyings this should be the currency in which the
underlying price is quoted

• for FX underlyings FX-SOURCE-CCY1-CCY2 this should be the domestic (target,
numeraire) currency CCY2.

17

If the payment currency is set to a different currency on the other hand, the resulting
payoff is a true quanto payoff, i.e. the amount of the payoff is determined on the natural
currency, but paid in a different currency without converting the amount to this latter
currency using the fair FX Spot rate on the settlement date.
We are aware that a conversion from the natural payoff currency to a different settlement
currency using the fair FX Spot rate is sometimes part of the terms and conditions of
a trade. This conversion has no or small impact on the valuation and risk profile of a
trade though and is therefore usually not part of the payoff modeling.
As an example consider a Forward Volatility Agreement on the FX pair GBP-EUR. The
PayCcy should be set to EUR in this case, even if the forward premium is settled in
GBP as it is usual market practice for this pair.
Notice that the above does not apply to fixed premiums, where the premium is given as
a fixed number in the trade xml together with a premium currency in which this amount
should be paid.

2.11 Convenience Trade Wrappers

We provide a number of trade wrappers that read a “normal” ORE XML and translates
this internally to the script data structure. Examples include the trade types

• DoubleDigitalOption

• PerformanceOption 01

• Autocallable 01.

The implementation of a wrapper is usually done by inheriting from ScriptedTrade and
implementing the fromXML(), toXML() and build() methods appropriately, see one of
the classes on how this is done in detail.

2.12 SIMM product type deduction

The SIMM product type is deduced as follows

• if at least one commodity index is present in the script, it is set to “Commodity”

• else, if at least one equity index is present in the script, it is set to “Equity”

• otherwise it is set to “RatesFX”

2.13 Scripting and AMC

Scripted trades can be used in combination with AMC analytics type. Usually a separate
script will be used within this analytics type because of the special inputs and outputs of
AMC scripts as outlined below. To set up a separate script that should be used within
the AMC analytics type, the attribute purpose should be given the value AMC, i.e. in
the script library we could have

18

<Script>

<Name>BermudanSwaption</Name>

<!-- default script -->

<Script>

...

</Script>

<!-- script that will be preferred in an AMC context -->

<Script purpose="AMC">

...

</Script>

</Script>

and similar for embedded scripts. A script that in run withing the AMC analytics type
gets a special input event array _AMC_SimDates that contains the dates on which a
conditional NPV is required as an output. This output has to be delivered in a number
array _AMC_NPV which has the same size. Typically one will build a new schedule from
the amc sim dates and other event dates using something like

<NewSchedules>

<NewSchedule>

<Name>ExerciseAndSimDates</Name>

<Operation>Join</Operation>

<Schedules>

<Schedule>_AMC_SimDates</Schedule>

<Schedule>ExerciseDates</Schedule>

</Schedules>

</NewSchedule>

</NewSchedules>

within the script node (see 2.2). When looping over the common event dates, the
DATEINDEX() function can be used to distinguish the different kind of events.
The AMC analytics type supports several simulation modes w.r.t. mpor grids

• no close-out lag

• close-out lag with mpor mode actual date

• close-out lag with mpor mode sticky date

In the first two cases the _AMC_SimDate grid will consist of all valuation and close-out
dates specified in the simulation setup. In the last case the _AMC_SimDate grid will
consist only of the valuation date and two runs will be performed on these dates, one
using the original and another one using a time-shifted stochastic process. Since it is not
desirable that exercise decisions or barrier hit indicators are recomputed in the second
run, it is possible to define a set of variables for which values are computed in the first
run and then reused in these second run. Assignments to these variables in the second
run are ignored. The definition of such variables is done in the script node (see 2.2):

<StickyCloseOutStates>

<StickyCloseOutState>ExerciseIndicator</StickyCloseOutState>

</StickyCloseOutStates>

19

3 Scripting Language

3.1 Whitespace

Whitespace (space, tab, return, newline) is ignored during the parsing. All variable
identifiers and keywords are case sensitive.

3.2 Keywords

The language uses keywords and predefined function names as listed in table 1 which
may may not be used as variable identifiers.
In addition the following variable identifiers are automatically populated with special
values when running the script engine on a trade:

• TODAY: the current evaluation date

3.3 Variables

Variables that can be used in the script are either

• externally defined variables, defined in the data node of the trade xml representa-
tion

• variables local to the script, declared within the script

Externally defined variables are protected from being modified by the script. All vari-
ables used within the script must be either externally defined or declared at the top of
the script using

NUMBER continuationValue, exerciseValue, x[10];

which declares two scalars continuationValue and exerciseValue and an array x of
size 10 (see 3.4 for more details on arrays). The only exemption to this rule is the
variable declared in the NPV node of the script, which is definied implicitly as a scalar
number.
Notice that within the script only variables of type Number can be declared.1 All
variables are initialised with 0. The scope of a variable declaration is always global to
the script, multiple declarations of the same variable name are forbidden.
Variable identifiers are subject to the following restrictions

• must start with a character, then characters or numbers or underscores may follow

• no other special characters, no keywords or predefined functions allowed (see 3.2)

• e.g. x or x 23, aValue are valid identifiers

• identifiers starting with an underscore are technically allowed as well, but reserved
for special use cases (e.g _AMC_SimDates and _AMC_NPV for AMC exposure gener-
ation)

1this restriction allows the static analysis of the script, see 6.1

20

Keyword Context
IF Control Flow
THEN

ELSE

END

FOR

IN

DO

NUMBER Type Identifiers
OR Logical Operators
AND

abs Functions
exp

ln

sqrt

normalCdf

normalPdf

max

min

pow

black

dcf

days

PAY Model dependent functions
LOGPAY

NPV

NPVMEM

HISTFIXING

DISCOUNT

FWDCOMP

FWDAVG

ABOVEPROB

BELOWPORB

SIZE Other Statements
DATEINDEX

REQUIRE

SORT

PERMUTE

Table 1: Reserved keywords.

21

3.4 Arrays, SIZE operator

Arrays are declared by specifying the size of the array in sqaure brackets, e.g.

NUMBER x[10], y[SIZE(ObservationDates)], z[5+3*v];

declares arrays

• x of size 10

• y with the same size as the array ObservationDates

• z with size 5 + 3v where v is a number variable

Once an array is delcared its size can not be changed. The ith element of an array a is
accessed by a[i], where i is an expression evaluating to a number. Here i = 1, 2, 3, . . . , n,
where n is the fixed size of the array, i.e. the subscripts start at 1 (as opposed to 0 as
in some other languages).
The size of an array a can be evaluated by SIZE(a). Only one dimensional arrays are
supported. The array subscript must be deterministic, e.g.

IF Underlying > Strike THEN

i = 1;

ELSE

i = 2;

END;

Payoff = y[i];

is illegal since i in general will be path-dependent, but

IF Underlying > Strike THEN

Payoff = y[1];

ELSE

Payoff = y[2];

END;

is valid.2

3.5 Sorting Arrays: SORT and PERMUTE instructions

Given an array x of number type the statement

SORT (x);

will sort the array (pathwise) in ascending order. The statement

SORT (x, y);

will write a sorted version of x to y and leave x unchanged. The array y must be of
number type and have the same size as x. The array y can also be equal to x, the
statement SORT(x,x); is equivalent to SORT(x);. Finally the statement

SORT (x, y, p);

2the background is the simplicity and performance of the engine implementation

22

will write a sorted version of x to y and populate another array p with indices 1, . . . , SIZE(x)
such that x[p[1]], . . . , x[p[n]] is sorted. Here p must be an array with the same size as x
and of number type.
A permutation p generated as above (or set up otherwise) can be used to sort an unre-
lated array z using

PERMUTE (z, p);

which will reorder the values of z as z[1] → z[p[1]], z[2] → z[p[2]] ... etc. The statement

PERMUTE (z, w, p);

will do the same, but write the result to w and leave z untouched.

3.6 Function DATEINDEX

Given an array a and a single date d, the expression

DATEINDEX(d, a, EQ)

returns 0 if the date d is not found in the array a and otherwise the (first) index i for
which a[i] equals d. The variable d is required to be of type event. The variable a is
only required to be an array, if the type of its elements are not event, the return value
will always be zero indicating that d was not found in a. Similarly,

DATEINDEX(d, a, GEQ)

returns the index of the earliest date in a that is greater or equal than d, and

DATEINDEX(d, a, GT)

returns the index of the earliest date in a that is greater than d. If no such dates exists
for GEQ or GT, the size of a plus 1 will be returned.

3.7 Instructions

A typical script comprises a sequence of instructions, each one terminated by ;.

3.8 Index evaluation

Given an variable index of type Index its historical or projected fixing at a date d is
evaluated using the expression index(d). This is applicable to all index types. For
example

Underlying(ObservationDate)

evaluates the index assigned to the variable Underlying at the date assigned to the
variable ObservationDate. For FX, EQ, IR and COMM Spot indices this corresponds
to a a fixing at the observation date in the usual sense. For COMM Future indices it is
the observed future price at the observation date.
For INF indices the argument is the actual fixing date, which due to availability lags is
observed at a later simulation time in models with dynamical inflation simulation. For

23

example in the GaussianCam model, this lag is defined as the number of calendar days
from the zero inflation term structure base date to its reference date (adjusted to the
first date of the inflation period to be consistent with the same adjustment applied to
the base date). This means that when observing an inflation index at a fixing date d,
the model state at d+ lag is used to make this observation.
The extended syntax

Underlying(ObservationDate, ForwardDate)

evaluates the projected fixing for ForwardDate as seen from ObservationDate.
This is applicable to FX, EQ, IR, INF and COMM Spot indices, but not to COMM
Future indices, since for the latter the two concepts coincide (for ForwardDate ¡ Future-
Expiry). If a forward date is given for the observation of a COMM future index, no
error is thrown, but it will be ignored.
For inflation indices, the ForwardDate will be the actual fixing date again and the
ObservationDate will be using a lagged state as explained above.
The ForwardDate must be greater or equal than the ObservationDate. If the Forward-
Date is strictly greater than the ObservationDate the ObservationDate must not be
a past date (for inflation indices it must not lie before the inflation term structure’s
base date), since the computation of projected fixings for past dates would involve the
knowledge of past curves, i.e. past market data.
Notice also the further specifics of commodity and inflation indices in 2.6.

3.9 Comparisons == and !=

Compares two values, e.g. x==y or x!=y. This is applicable to all types. For a number
the interpretation is “numerically equal”.

3.10 Comparisons <, <=, >, >=

Compares two values x<y, x<=y, x>y, x>=y. Applicable to numbers and events, but not
to currencies or indices. For numbers the interpretation is “less than, but not numerically
equal”, “less than or numerically equal”, etc.

3.11 Operations +, -, *, /

Arithmetic operations x+y, x-y, x*y, x/y, applicable to numbers only.

3.12 Assignment =

Assignment x = y, only allowed for numbers within the script.

3.13 Logical Operators AND, OR, NOT

Connects results of comparisons or other logical expressions:

• x<y AND z!=0

• x<y OR z!=0

24

• NOT(x==y)

• AND has higher precedence than OR, e.g.

• x<y AND y<z OR z!=0 same as {x<y AND y<z} OR z!=0, but

• x<y AND {y<z OR z!=0} requires parenthesis

• better always use parenthesis when mixing AND / OR

3.14 Conditionals: IF ... THEN ... ELSE ...

Conditional execution can be written as

IF condition THEN

... if-body ...

ELSE

... else-body ...

END

Examples:

IF x == y THEN

z = PAY(X,d,p,ccy);

w = 1;

END;

IF x == y THEN

z = PAY(X,d,p,ccy);

ELSE

z = 0;

w = 0;

END;

where the ELSE part is optional. The body can comprise one ore more instructions, each
of which must be terminated by ;.

3.15 Loops: FOR ... IN ... DO

Loops are written as

FOR i IN (a,b,s) DO

... body ...

END

where i is a number variable identifier, and a, b, s are expressions that yield a result
of type Number. The variable i must have been declared in the script before it can be
used as a loop variable. The code in the body is executed for the values i = a, a+ s, . . .
until a+ ks > b if s > 0 or a+ ks < b if s < 0 for some integer k > 0. All values a, b, s
must be integers and s ̸= 0.
Example:

NUMBER i,x;

FOR i IN (1,100.1) DO x = x + i; END;

Here a, b must be deterministic, i must not be modified in the loop body. If a or b are
modified in the loop body, still the initial values read at the start of the loop are used.
The loop body can comprise one or more instructions, each of which must be terminated
by ;.

25

3.16 Special variable: TODAY

A constant event variable, set to the current evaluation date. This can e.g. be used to
restrict exercise decisions to future dates, see 3.26 for an example.

3.17 Checks: REQUIRE

If the condition C is not true, a runtime error is thrown. Examples:

• REQUIRE SIZE(ExerciseDates) == SIZE(SettlementDates);

• REQUIRE SIZE(Underlyings) == 2;

• REQUIRE Strike >= 0;

3.18 Functions min, max, pow

Binary functions min(x,y), max(x,y), pow(x,y), applicable to numbers only.

3.19 Functions -, abs, exp, ln, sqrt

Unary functions -x, abs(x), exp(x), ln(x), sqrt(x), applicable to numbers only.

3.20 Functions normalPdf, normalCdf

Returns the standard normal pdf ϕ(x) resp. cdf Φ(x), applicable to numbers only.

3.21 Function black

Implements the black formula black(omega, obs, expiry, k, f, sigma) with

black = ω · (fΦ(ωd1)− kΦ(ωd2))

d1,2 =
ln(f/k)± 1

2
σ2t

σ
√
t

where t is the (model’s) year fraction between obs and expiry date, i.e.:

• omega is 1 (call) or −1 (put)

• obs, expiry are the observation / expiry dates

• k, f are the strike and the forward

• sigma is the implied volatility

• notice that no discounting is applied

3.22 Function dcf

The expression dcf(dc, d1, d2) returns the day count fraction for a day count con-
vention dc and a period defined by dates d1 and d2.

26

3.23 Function days

The expression days(dc, d1, d2) returns the number of days between d1 and d2 for a
day count convention dc.

3.24 Function PAY

The expression PAY(X, d, p, ccy) calculates a discounted payoff for an amount X
observed at a date d, paid at a date p in currency ccy, i.e.

XPccy(d, p)FXccy,base(d)

N(d)
(1)

where

• here Pccy is the discount factor in currency ccy, FX is the FX spot from ccy to
base and N is the model numeraire

• d ≤ p must hold

• if p lies on or before the evaluation date, the result is zero; X is not evaluated in
this case. Note that X is evaluated in the LOGPAY function if past cashflows are
included, see 3.25.

• avoids reading non-relevant past fixings from the index history

• if d lies before (but p after) the evaluation date, it is set to the evaluation date,
i.e. the result is computed as of the evaluation date

3.25 Function LOGPAY

The expression LOGPAY(X, d, p, ccy) has the same meaning as PAY(X, d, p, ccy)

(see 3.24) but as a side effect populates an internal cashflow log that is used to generate
expected flows. The generated flow is

N(0)E
(

XPccy(d,p)FXccy,base(d)

N(d)

)
FXccy,base(0)Pccy(0, p)

(2)

which ensures that the flows discounted on T0 curves and converted with T0 FX Spots
reproduce the NPV generated from LOGPAY expressions.
There is a second form LOGPAY(X, d, p, ccy, legNo, type) taking in addition

• a leg number legNo, which must evaluate to a determinisitc number

• a cashflow type type, which is an arbitrary string meeting the conventions for
variable names

This additional information is used to populate the ORE cashflow report. If not given,
legNo is set to 0 and type is set to Unspecified. Notice that cashflows will equal
pay dates, pay currencies, leg numbers and types are aggregated to one number in the
cashflow report.
A third form LOGPAY(X, d, p, ccy, legNo, type, slot) takes an additional param-
eter slot which must evaluate to a whole positive and deterministic number 1, 2, 3,

27

If several cashflows are logged into the same slot, previous results are overwritten. This
is useful for scripts where tentative cashflows are generated that are later on superseded
by other cashflows (e.g. for an American option).
Examples for the three forms are given below:

Payoff1 = LOGPAY(Notional * fixedRate, PayDate, PayDate, PayCcy);

Payoff2 = LOGPAY(Notional * fixedRate, PayDate, PayDate, PayCcy, 2, Interest);

Payoff3 = LOGPAY(Notional * fixedRate, PayDate, PayDate, PayCcy, 2, Interest, 3);

Here, Payoff1 will appear under leg number 0 and flow type “Unspecified” in the cashflow
report. Payoff2 will appear under leg number 2 and flow Type “Interest”. The same
holds for Payoff3, but if any amounts were booked using the slot parameter 3 previously
they will be overwritten with the current amount.
Note: If IncludePastCashflows in the pricing engine config is set to true then even if p
lies on or before the evaluation date, a cashflow entry will be generated.

3.26 Function NPV, NPVMEM

The expression NPV(X, d, [C], [R1], [R2]) calculates a conditional NPV of an amount
X conditional on a date d, i.e.

E(X |Fd ∩ FC) (3)

where Fd is the sigma algebra representing the information generated by the model up
to d and FC represents the additional condition C (if given). In an MC model 3 is
computed using a regression against the model state at d. C can be used to filter the
training paths, e.g. on ITM paths only. d must not lie before the evaluation date, but
for convenience the scipt engines will treat d as if it were equal to the evaluation date
in this case for the purpose of the NPV function evaluation.
The regressor can be enriched by (at most 2) additional variables Ri. A typical usage
is the accumulated coupon in a target redemption feature which heavily influences the
future conditional NPV but is not captured in the model state.
A typical usage of the NPV function is to decide on early exercises in the Longstaff-
Schwartz algorithm:

NUMBER Payoff, d;

FOR d IN (SIZE(ExerciseDates), 1) DO

IF ExerciseDates[d] > TODAY THEN

Payoff = PAY(PutCall * (Underlying(ExerciseDates[d]) - Strike),

ExerciseDates[d], ExerciseDates[d], PayCcy);

IF Payoff > 0 AND Payoff > NPV(Option, ExerciseDates[d], Payoff > 0) THEN

Option = Payoff;

END;

END;

END;

Option = LongShort * Quantity * Option;

Here TODAY represents the evaluation date to ensure that only future exercise dates are
evaluated, see 3.16.
Note: It is the users responsibility to use NPV() correctly to a certain extend: An exam-
ple would be that X is composed from both past and future fixings w.r.t. the observation
time t. In that case only the future fixings should be included in the argument of NPV(),
whereas the past fixings are known and should just be added to the result of NPV().

28

The variant NPVMEM(X, d, s, [C], [R1], [R2]) works exactly like NPV(X, d, [C],

[R1], [R2]) except that it takes an additional parameter s that must be an integer.
If NPVMEM() is called more than once for the same parameter s a regression model
representing the conditional npv will only be trained once and after that the trained
model will be reused. The usual use case is for scripts used in combination with the
AMCmodule where a regression model will be trained on a relative large number of paths
(specified in the pricing engine configuration) and then reused in the global exposure
simulation on a relatively small number of paths (specified in the xva simulation setup).

3.27 Function HISTFIXING

The expression HISTFIXING(Underlying, d) returns 1 if d lies on or before the reference
date and the underlying has a historical fixing as of the date d and 0 otherwise.

3.28 Function DISCOUNT

The expression DISCOUNT(d, p, ccy) calculates a discount factor Pccy(d, p) as of d for
p in currency ccy. Here d must not be a past date and d ≤ p must hold.

3.29 Functions FWDCOMP and FWDAVG

The FWDCOMP() and FWDAVG() functions are used to calculate a daily compounded or
averaged rate over a certain period based on an overnight index such as USD-SOFR,
GBP-SONIA, EUR-ESTER etc..
The rate is estimated as seen from an observation date looking forward from that date,
even if fixings relevant for the rate lie in the past w.r.t. the observation date. In the latter
case, an approximation to the true rate which is then dependent on the path leading
from TODAY to the current model state at the observation date is calculated. This
approximation is model-dependent. The only exception to this mechanics are historical
fixings that are known as of TODAY. Such fixings are always taken into consideration
with their true value.
More specifically, the FWDCOMP() and FWDAVG() functions take the following parame-
ters. The parameters must be given in that order, and all parameters must be given
in sequence up to the parameter “end” (last mandatory parameter) or the end of an
optional parameter group (i.e. an optional parameter group must be given as a whole).
Furthermore, all parameters must be deterministic.

• index [mandatory]: an overnight index index, e.g. EUR-EONIA, USD-SOFR, ...

• obs [mandatory]: an observation date obs ≤ start; if obs is < TODAY it is set to
TODAY, i.e. the result is as of TODAY in this case

• start [mandatory]: the value start date, this might be modified by a non-zero
lookback

• end [mandatory]: the value end date, this might be modified by a non-zero lookback

• spread [optional group 1]: a spread, defaults to 0 if not given

• gearing [optional group 1]: a gearing, defaults to 1 if not given

29

• lookback [optional group 2]: a lookback period given as number of days, defaults
to 0 if not given. This argument must be given as either a constant number or a
plain variable, i.e. not as a more complex expression than either of these.

• rateCutoff [optional group 2]: a rate cutoff given as number of days, defaults to 0
if not given

• fixingDays [optional group 2]: the fixing lag given as number of days, defaults to 0
if not given. This argument must be given as either a constant number or a plain
variable, i.e. not as a more complex expression than either of these.

• includeSpread [optional group 2]: a flag indicating whether to include the spread
in the compounding, a value equal to 1 indicates ’true’, −1 false, defaults to ’false’
if not given

• cap [optional group 3]: a cap value, defaults to 999999 (no cap) if not given

• floor [optional group 3]: a floor value, defaults to −999999 (no floor) if not given

• nakedOption [optional group 3]: a flag indicating whether the embedded cap / floor
should be estimated, a value equal to −1 indicates ’false’ (capped / floored coupon
rate is estimated), 1 ’true’ (embedded cap / floor rate is estimated), defaults to
’false’ if not given

• localCapFloor [optional group3]: a flag indicating whether the cap / floor is local,
a value equal to −1 indicates ’false’, 1 ’true’, defaults to ’false’ if not given.

Based on these parameters a rate corresponding to that computed for a vanilla floating
leg is estimated, see the description in section “Floating Leg Data, Spreads, Gearings,
Caps and Floors” for more details on this.

3.30 Functions ABOVEPROB, BELOWPROB

These functions are only available in Monte Carlo engines. The expression

ABOVEPROB(underlying, d1, d2, U)

returns the pathwise probability that the value of an index underlying lies at or above a
number U for at least one time t between dates d1 and d2 conditional on the underlying
taking the simulated path values at d1 and d2. The probability is by definition computed
assuming a continuous monitoring. Similarly,

BELOWPROB(underlying, d1, d2, D)

returns the probability that the value of the underlying lies at or below D. Notice that
d1 and d2 should be adjacent simulation dates to ensure that the results computed in
the script are meaningful. This means the script should not evaluate the underlying at
a date d with d1 < d < d2.
We note that U and D are not required to be deterministic quantities, although the
common use case will probably be to have path-independent inputs.
Finally, if d1 > d2 both functions return 0.

30

4 Models

4.1 Pricing Engine Configuration

An example pricing engine configuration looks as follows.

<Product type="ScriptedTrade">

<Model>Generic</Model>

<ModelParameters>

<!-- shared parameters -->

<Parameter name="Model">BlackScholes</Parameter>

<Parameter name="InfModelType">DK</Parameter>

<Parameter name="BaseCcy">USD</Parameter>

<Parameter name="EnforceBaseCcy">false</Parameter>

<Parameter name="GridCoarsening">3M(1W),1Y(1M),5Y(3M),10Y(1Y),50Y(5Y)</Parameter>

<Parameter name="IrReversion">0.0</Parameter> <!-- fallback for other ccys -->

<Parameter name="IrReversion_EUR">0.0</Parameter>

<Parameter name="IrReversion_GBP">0.0</Parameter>

<Parameter name="FullDynamicIr">true</Parameter>

<Parameter name="FullDynamicFx">true</Parameter>

<Parameter name="ReferenceCalibrationGrid">400,3M</Parameter>

<Parameter name="Calibration">Deal</Parameter>

<!-- product specific parameters -->

<Parameter name="Model_SingleAssetOption(EQ)">BlackScholes</Parameter>

<Parameter name="Model_SingleAssetOption(FX)">BlackScholes</Parameter>

<Parameter name="Model_SingleAssetOption(COMM)">BlackScholes</Parameter>

<Parameter name="Model_SingleAssetOptionBwd(EQ)">BlackScholes</Parameter>

<Parameter name="Model_SingleAssetOptionBwd(FX)">BlackScholes</Parameter>

<Parameter name="Model_SingleAssetOptionBwd(COMM)">BlackScholes</Parameter>

<Parameter name="Model_SingleUnderlyingIrOption">GaussianCam</Parameter>

<Parameter name="Model_SingleUnderlyingIrOptionBwd">GaussianCam</Parameter>

<Parameter name="Model_MultiUnderlyingIrOption">GaussianCam</Parameter>

<Parameter name="Model_IrHybrid(EQ)">GaussianCam</Parameter>

<Parameter name="Model_IrHybrid(FX)">GaussianCam</Parameter>

<Parameter name="Model_IrHybrid(COMM)">GaussianCam</Parameter>

</ModelParameters>

<Engine>Generic</Engine>

<EngineParameters>

<!-- shared parameters -->

<Parameter name="Engine">MC</Parameter>

<Parameter name="Samples">10000</Parameter>

<Parameter name="StateGridPoints">200</Parameter>

<Parameter name="StateGridPoints_SingleUnderlyingIrOptionBwd">50</Parameter>

<Parameter name="MesherEpsilon">1E-4</Parameter>

<Parameter name="MesherScaling">1.5</Parameter>

<Parameter name="MesherConcentration">0.1</Parameter>

<Parameter name="MesherMaxConcentratingPoints">9999</Parameter>

<Parameter name="MesherIsStatic">true</Parameter>

<Parameter name="RegressionOrder">2</Parameter>

<Parameter name="TimeStepsPerYear">24</Parameter>

<Parameter name="Interactive">false</Parameter>

<Parameter name="BootstrapTolerance">0.1</Parameter>

<Parameter name="IncludePastCashflows">true</Parameter>

<Parameter name="RegressionVarianceCutoff">1E-5</Parameter>

<!-- product specific parameters -->

<Parameter name="RegressionOrder_SingleAssetOption(EQ)">6</Parameter>

<Parameter name="RegressionOrder_SingleAssetOption(FX)">6</Parameter>

<Parameter name="RegressionOrder_SingleAssetOption(COMM)">6</Parameter>

31

<Parameter name="Engine_SingleAssetOptionBwd(EQ)">FD</Parameter>

<Parameter name="Engine_SingleAssetOptionBwd(FX)">FD</Parameter>

<Parameter name="Engine_SingleAssetOptionBwd(COMM)">FD</Parameter>

<Parameter name="Engine_SingleUnderlyingIrOption">FD</Parameter>

<Parameter name="useAD_MultiAssetOptionAD(EQ)">true</Parameter>

<Parameter name="useAD_MultiAssetOptionAD(FX)">true</Parameter>

<Parameter name="useAD_MultiAssetOptionAD(COMM)">true</Parameter>

<!-- MultiUnderlyingIrOption -->

<!-- IrHybrid(EQ) -->

<!-- IrHybrid(FX) -->

<!-- IrHybrid(COMM) -->

</EngineParameters>

</Product>

The model parameters have the following meaning:

• Model: The model to be used. Currently BlackScholes, LocalVolDupire, Lo-
calVolAndreasenHuge, GaussianCam are supported

• BaseCcy: The default base ccy for the model. See 4.6 for the way the base ccy is
determined for a model.

• EnforceBaseCcy: Enforce the base ccy from the model settings to be used, see 4.6
for more details.

• FullDynamicFx: by default, dynamic fx processes are generated only for FX in-
dices on which the script explicitly depends; if this parameter is true, dynamic fx
processes are also generated for payment and equity / commodity ccys not equal
to the base ccy of the model or any of the currencies covered by those FX indices;
if the parameter is false on the other hand zero volatility paths are assumed for
these additional ccys

• FullDynamicIr: by default, dynamic ir processes are generated only for currencies
of the IR indices on which the script depends; if the parameter is true, dynamic
ir processes are also generated for currencies from fx indices, and payment and
equity / commodity ccys not equal to the base ccy of the model; if the parameter
is false zero volatility paths are assumed for these ccys

• InfModelType: Optional, defaults to “DK”. For the GaussianCam model two
flavours of inflation models are avaiable, Dodgson-Kainth (“DK”) and Jarrow-
Yildrim (“JY”). This parameter selects the flavour to use. Only applies to model
= GaussianCam

• ReferenceCalibrationGrid: If given, only one calibration point per defined interval
will be used (to avoid oscillations in the calibrated model volatility function or
also to improve the calibration speed), only applicable to model = GaussianCam

• Calibration: Deal or ATM. For Deal the calibration spec of a script is used to
calibrate a model. For ATM an ATM calibration is used. Optional, defaults to
Deal.

The engine parameters have the following meaning:

• Engine: The engine to be used. Currently MC and FD is supported.

32

• Samples: The number of MC samples used. Only relevant for Engine = MC.

• StateGridPoints: The number of grid points in state direction. Only relevant for
Engine = FD.

• MesherEpsilon: The FD mesher epsilon, optional, defaults to 1E-4.

• MesherScaling: The FD mesher scaling factor, optional, defaults tp 1.5.

• MesherConcentration: The FD mesher concentration parameter, optional, defaults
to 0.1

• MesherMaxConcentrationPoints: The maximum number of mesher concentration
points to use, optional, defaults to 9999, in which all calibration strikes from a
script are used. For 1 only the first strike from the list is used, for 2 the first two
strikes, etc.

• MesherIsStatic: If true, the mesher is built only once and reused under scenario
/ sensitivity computations. If false, the mesher is rebuilt for each repricing. Op-
tional, defaults to false. For sensitivity runs it should be set to true.

• RegressionOrder: The order of the polynomial basis to compute conditional ex-
pectations via regression analysis. Applies to MC only.

• SequenceType: The sequence type used for pricing. Defaults to SobolBrownian-
Bridge. Possible values SobolBrownianBridge, Burley2020SobolBrownianBridge,
MersenneTwister, MersenneTwisterAnithetic, Sobol, Burley2020Sobol. Applies to
MC only.

• PolynomType: The polynom type used for regression analysis. Defaults to Mono-
mial. Possible values Monomial, Laguerre, Hermite, Hyperbolic, Legendre, Cheby-
shev, Chebychev2nd. Applies to MC only.

• TrainingSamples: If given, pricing and training are separate phases and traning
phase is using this number of samples. Notice that NPVMEM() should be used to
reuse regression coefficients from the training phase in the pricing phase. Applies
to MC only.

• TrainingSeed: The seed used for rng in training phase. Only applies if Train-
ingSamples are given (and thus training and pricing phases are separate). Defaults
to 43. Applies to MC only.

• TrainingSequenceType: The sequence type used for training. Only applies if Train-
ingSamples are given (and thus training and pricing phases are separate). See
SequenceType for possible values. Defaults to MersenneTwister. Applies to MC
only.

• SobolOrdering: Sobol sequence ordering for brownian bridge. Defaults to Steps.
Possible values Steps, Factors, Diagonal. Applies to MC only.

• SobolDirectionIntegers: Sobol direction integers. Defaults to JoeKuoD7. Possible
values Unit, Jaeckel, SobolLevitan, SobolLevitanLemieux, JoeKuoD5, JoeKuoD6,
JoeKuoD7, Kuo, Kuo2, Kuo3. Applies to MC only.

33

• Seed: The seed for rng in pricing phase. Defaults to 42. Applies to MC only.

• TimeStepsPerYear: The number of time steps used to discretise the process. For 0
only the relevant simulation times are used. Otherwise at least the given number
of step are used in the discretisation grid per year.

• CalibrationMoneyness: Moneyness of options used for smile calibration. Applies
to the LocalVolAndreasenHuge model only. The moneyness is defined as a “stan-
dardised moneyness” ln(K/F)/σ

√
t with K strike, F ATMF forward, σ ATMF

market vol, t option time to expiry

• BootstrapTolerance: tolerance for calibration bootstrap, only applies to model =
GaussianCam

• IncludePastCashflows: if true, LOGPAY() will generate cashflow information for
pay dates on or before the reference date. Optional, defaults to false.

• RegressionVarianceCutoff: Optional. Only relevant for MC models. If given, a
coordinate transform and (possibly) a factor reduction is applied to the regressors
used for conditional expectation calculation, such that 1−ϵ of the total variance of
regressors is kept, where ϵ the given parameter. This helps dealing with collinearity
and also reducing the dimnensionality of the regression model.

• Interactive: If true an interactive session is started on script execution for debug-
ging purposes; should be false except for debugging purposes

• UseAD: If true and RunType in the global pricing engine parameters is Sensi-
tivityDelta, a first order pnl expansion using AD sensitivities is used to compute
scenario NPVs.

• UseCG: If true a computation graph is used to price trades instead of the runtime
interpreter . If UseAD or UseExternalComputingDevice is true, this implies that
UseCG is true irrespective of how it is configured.

• UseExternalComputingDevice: If true and RunType is not NPV (generating ad-
ditional results) and AD sensitivities are not used, an external compute device is
used for the calculations.

• UseDoublePrecisionForExternalCalculation: Use double precision for external com-
putations. Defaults to false.

• ExternalDeviceCompatibilityMode: Only applies if UseCG is enabled. Defaults
to false. If enabled, random number generation for internal calculations using the
CG is aligned as closely as possible with what is usually implemented for external
calculations, i.e. if enabled, the MersenneTwister random number generation is
done in step-dimension-path order. If disabled, the “classic” order path-step-
dimension is used.

• ExternalComputeDevice: The external compute device to use if UseExternalCom-
putingDevice is effective.

34

4.2 Product Tags und pricing engine configuration

All parameters in the pricing engine configuration can be differentiated by product tags,
see 2.2 for how to add these to a script definition. If a script has a product tag TAG

assigned, parameters with suffix _TAG are relevant if given. If for a parameter no version
with the product tag is given, the corresponding parameter without a tag is used as a
fallback.
Product tags may contain the asset class variable {AssetClass} which is replaced by EQ,
FX or COMM depending on the underlying asset class. If more than one index type eq, fx,
comm occurs in the trade, the asset class variable is set to HYBRID. Notice that interest
rate indices do not affect the asset class variable: If e.g. an equity trade contains an
interest rate funding leg, the asset class shouuld still be EQ. Trades with exotic interest
rate elements on the other hand can be distinguished by the product tag itself, see below
for an example. If no eq, fx, comm index occurs in the trade, the asset class variable is
left blank.
Table 2 gives a typical example for grouping scripts using the product tag. The suffix
“AD” is meant to mark scripts that are suitable for AAD sensitivity computations.

Product Tag Examples Suitable Models Suitable Engines
SingleAssetOption({AssetClass}) FX TaRF BS, LV, GCAM MC
SingleAssetOptionAD({AssetClass}) FX TaRF BS, LV, GCAM MC
SingleAssetOptionBwd({AssetClass}) EQ American Option BS, LV, GCAM MC, FD
MultiAssetOption({AssetClass}) EQ Autocallable BS, LV, GCAM MC
MultiAssetOptionAD({AssetClass}) EQ Autocallable BS, LV, GCAM MC
SingleUnderlyingIrOption IR TaRN LGM1F MC
SingleUnderlyingIrOptionBwd Bermudan swaption LGM1F MC, FD, Conv
MultiUnderlyingIrOption Cross currency swaption GCAM MC
IrHybrid({AssetClass}) IR-EQ basket option GCAM MC

Table 2: Grouping trades by product tag (Example), models are abbreviated as
BS = BlackScholes, LV = LocalVol, GCAM = GaussianCrossAsset

4.3 BlackScholes model

Models black scholes processes for EQ, FX, COMM underlyings. The strike slice of the
input volatility is chosen as ATMF or as the first strike given in the list of calibration
strikes for an index.
See 4.1 for the impact of the model parameter FullDynamicFx on the model setup.
For MC TimeStepsPerYear are ignored if the correlation structure is trivial, because then
the process can be discretised exactly. Otherwise the given time steps per year are used to
build a grid on which covariance matrices are computed assuming a constant volatility
between the grid points. The actual MC paths are evoloved using these covariance
matrices on the original (non-refined) time grid, i.e. taking large, exact steps again.
For FD TimeStepsPerYear, StateGridPoints, MesherEpsilon, MesherScaling, Mesher-
Concentration, MesehMaxConcentrationPoints, MesherIsStatic are used, see the descrip-
tion of these parameters for their detailled interpretation.

Available Engine types: MC, FD

4.4 LocalVolDupire, LocallVolAndreasenHuge models

Models local volatility processes for EQ, FX, COMM underlyings using the full smile
from input volatility term structures. To construct the local volatility surface either the

35

classic Dupire formula or the Andreasen-Huge method is used, see [1] for the latter. The
parameter FullDynamicFx has an analoguous meaning as in the case of the BlackScholes
model.
Calibration strike specifications (see 4.8) are not relevant for this model.
See 4.1 for the impact of the model parameter FullDynamicFx on the model setup.

Available Engine types: MC

4.5 GaussianCam models

Models black scholes processes for EQ, FX, COMM and LGM 1F processes for IR. For
INF processes Dodgson-Kainth (“DK”) and Jarrow-Yidlrim (“JY”) models are available.
The strike slice of the input volatility is chosen as ATMF / fair forward swap rate.
Furthermore,

• For IR processes a strip of atm coterminal swaptions is used for the model cali-
bration.

• For INF processes a strip of atm CPI cap/floors is used for the model calibration.
For DK the reversion is calibrated and the volatility is fixed at 0.00050. For JY
the index volatility is calibrated. The reversion of the real rate process is fixed at
0 and the volatility at 0.0030. The real rate process is assumed to be uncorrelated
to the nominal rate and index process within the JY model, and also to all other
IR, EQ, FX, COMM processes in the model.

Calibration strike specifications (see 4.8) are not yet supported by this model.
See 4.1 for the impact of the model parameters FullDynamicFx, FullDynamicIr on the
model setup.
The FD model variant is supported for a single underlying IR model only. A single
calibration strike is supported that can be specified for any IR model index appearing
in the script. TimeStepsPerYear, StateGridPoints, MesherEpsilon are used, see the
description of these parameters for their detailled interpretation.

Available Engine types: MC, FD

4.6 Base Currency Determination

The base currency of a model is determined using the following ruleset:

• If the model parameter EnforceBaseCcy is set to true, the base ccy is read from
the model parameter BaseCcy

• Otherwise base ccy candidates are collected as the

– target (domestic) currencies of underlying fx indices

– if no fx indices are present in the model, all pay currencies that can occur

• If the set of base ccy candidates contains exactly one element, the base ccy is
chosed as this currency

• Otherwise the base ccy from the model parameters is chosen to be the model base
ccy

36

4.7 Grid Coarsening

Date schedules that are eligible for grid coarsening are listed in the (optional) Schedule-
Coarsening subnode of the script (see 2.2)

<Script>

<Code>...</Code>

<NPV>...</NPV>

<Results>...</Results>

<ProductTag>...</ProductTag>

<ScheduleCoarsening>

<EligibleSchedule>ObservationDates</EligibleSchedule>

<EligibleSchedule>KnockOutDates</EligibleSchedule>

</ScheduleCoarsening>

</Script>

If a date schedule is eligible for grid coarsening the original grid is coarsened using
the model parameter GridCoarsening if this is not empty (meaning no coarsening is
applied). The parameter consists of a comma separated list of pairs of periods like
3M(1W),1Y(1M),5Y(3M),10Y(1Y),50Y(5Y). The coarsening procedure then works as
follows (for the example rule):

• dates before or equal to the evaluation date are always kepts

• out to 3M in each subperiod of length 1W starting at the evaluation date at most
one date of the original grid is kept in the result grid

• out to 1Y in each subperiod of length 1M starting at the last subperiod end date
from the previous step at most one date of the original grid is kept

• etc. ... until all subperiods out to the last period 50Y are covered, all dates in the
original grid that lie beyond the last subperiod are not present in the result grid

4.8 Calibration

The calibration approach for the model is specified on the engine parameter level (see
4.1). If the model parameter Calibration is set to Deal, information on the calibration
instruments is extracted from the CalibrationSpc subnode of the script node (see 2.2).
If this subnode is not given, the calibration falls back to ATMF, meaning that ATMF
instruments (coterminals for IR) are used for calibration.

<Script>

<Code>...</Code>

<NPV>...</NPV>

<Results>...</Results>

<CalibrationSpec>

<Calibration>

<Index>Underlying</Index>

<Strikes>

<Strike>Strike</Strike>

<Strike>KnockOutLevel</Strike>

</Strikes>

</Calibration>

</CalibrationSpec>

</Script>

37

The node CalibrationSpec can have one subnode Calibration per Index occuring in the
script. For each index a list of calibration strikes can be specified. The list should
start with the most important calibration strike and continue with strikes of decreasing
importance. In the example (which could be a typcial setup for barrier option) the most
important strike is given by the Strike variable and a secondary strike is given by the
KnockOutLevel.
The usage of the calibration strikes is twofold:

• For the determination of calibration strikes. This is only relevant / supported by
the BlackScholes and GaussianCam-FD model, which will use the first strike from
the list to read the volatility from the market term structure (if Calibration is set
to Deal in the model parameters).

• To determine concentration points for an FD mesher if Engine is set to FD. The
first n strikes are used as concentration points where n is the minimum of spec-
ified strikes and the engine parameter MesherMaxConcentrationPoints. This is
supported by the BlackScholes model only.

4.9 FX tags and correlation curves

FX indices contain a “tag”, e.g. we can have two different EURUSD indices FX-ECB-
EUR-USD and FX-CLOSE-EUR-USD with different historical fixings. This is respected
in the script engine, i.e. historical fixings are retrieved using the exact FX index name
including the tag.
For projection on the other hand we only have one set of market data per currency pair
(FX Spot, forwarding curves and volatilities). This also holds for implied correlations,
therefore correlation curves should be set up using the tag “GENERIC” always, e.g.
the correlation between the pairs EUR-USD and JPY-USD shold be set up as FX-
GENERIC-JPY-USD:FX-GENERIC-EUR-USD. The ordering of the indices in the pair
follow the usual rules, i.e.

• COM < EQ < FX < IBOR < CMS

• smaller period < greater period for IBOR and CMS indices

• alphabetical order of index names for COM, EQ indices resp. of CCY1 then CCY2
for FX indices

5 Error Diagnostics and Debugging

5.1 Errors during parsing

The log file contains errors that occur during parsing showing the code context and type
of error, e.g.

DEBUG Getting script 'EuropeanOption' from library

DEBUG parsing script (size 313)

ALERT an error occured during script parsing:

NOTICE parsing stopped at L1:1:0

NOTICE expected ")" in L4:68:0:

NOTICE Option = LongShort * Quantity * PAY((max(Payoff, 0), Expiry, Settlement, PayCcy);

NOTICE ^--- here

ALERT [STEM] scripted trade could not be built due to parser errors, see log for more details.

38

5.2 Errors during runtime

The log file also contains errors that occur during the script execution, e.g.

<<<<<<<<<<

Payoff = PutCall * (Underlying(Expiry) - Strike);

======

>>>>>>>>>>

Error during script execution: variable 'Payoff' is not defined. at L3:14:6

5.3 Tracing

If tracing is enabled in the engine parameters, the AST resulting from parsing is dumped
to the log file, e.g.

Sequence at L2:14:289

DeclarationNumber at L2:14:35

Variable(Payoff) at L2:21:6

-

Variable(ExerciseProbability) at L2:29:19

-

Assignment at L3:14:49

Variable(Payoff) at L3:14:6

-

OperatorMultiply at L3:23:39

Variable(PutCall) at L3:23:7

-

OperatorMinus at L3:33:29

VarEvaluation at L3:34:18

Variable(Underlying) at L3:34:10

-

Variable(Expiry) at L3:45:6

-

Variable(Strike) at L3:55:6

-

Assignment at L4:14:83

Variable(Option) at L4:14:6

-

OperatorMultiply at L4:23:73

Variable(LongShort) at L4:23:9

-

OperatorMultiply at L4:35:61

Variable(Quantity) at L4:35:8

-

FunctionPay at L4:46:50

FunctionMax at L4:51:16

Variable(Payoff) at L4:56:6

-

...

This can be used to track down parsing errors at a low level. Furthermore the context
before the script engine is run is logged containing the variables from the data node of
the scripted trade, e.g.

run script engine, context before run is:

Expiry (Event) const February 9th, 2020

LongShort (Number) const 1.000000 (10000 det)

39

Option (Number) 0.000000 (10000 det)

PayCcy (Currency) const USD

PutCall (Number) const 1.000000 (10000 det)

Quantity (Number) const 1000.000000 (10000 det)

Settlement (Event) const February 9th, 2020

Strike (Number) const 2147.560000 (10000 det)

TODAY (Event) const February 5th, 2016

Underlying (Index) const EQ-SPX

which can be used to verify the input data used for the concrete trade pricing. Finally
each execution step is logged with the AST node type currently processed, the value of
the current evaluation and the code context which produced it

...

variable(Expiry) at L3:45:6

expr value = February 9th, 2020

<<<<<<<<<<

Payoff = PutCall * (Underlying(Expiry) - Strike);

======

>>>>>>>>>>

indexEval(EQ-SPX, February 9th, 2020) at L3:34:18

expr value = [1807.87,2534.44,1289.6,1541.2,3216.55,2120.7,1016.12,1159.3,2309.33,3898.24...]

<<<<<<<<<<

Payoff = PutCall * (Underlying(Expiry) - Strike);

==================

>>>>>>>>>>

...

If the Interactive flag is set in the engine parameters, the single execution steps are
displayed on the console output and the user is prompted for a command input which
can be

• (c) to display the current state of the variables (context)

• (q) to continue the script execution without being promted any further

• return to execute the next step in the script

6 Implementation Details

6.1 Static Analysis

Extracts a superset of

• indices and associated observation dates from evaluation operator applications (see
3.8) as well as forward dates, if applicable

• observation dates from the PAY function (see 3.24) or from the DISCOUNT func-
tion (see 3.28) as well as payment dates / discount end dates; this is done per
currency

• dates on which a conditional expectation is required from the NPV function (see
3.26)

that can possibly occur in a concrete script execution. The results from the static
analysis are used to set up the model against which the script is eventually run.

40

6.2 Script Parser

Translates the script into an Abstract Syntax Tree (AST).

6.3 Script Analyzer

Extracts information from the AST and a concrete set of external data that is needed
to set up and calibrate a model like the index names and the required simulation times
for the indices.

6.4 Script Engine

Runs a script on the AST using a certain model type against a concrete model instance
and given a concrete set of external data.

6.5 Model

Interface that a model must implement so that the script engine can be run against it.
An example is the BlackScholes class.

References

[1] Andreasen J., Huge B.: Volatility Interpolation (2010) https://ssrn.com/

abstract=1694972

[2] Caspers, Peter: Daily Spread Curves and Ester (September 30, 2019). Available
at SSRN: https://ssrn.com/abstract=3500090 or http://dx.doi.org/10.2139/
ssrn.3500090

41

https://ssrn.com/abstract=1694972
https://ssrn.com/abstract=1694972
https://ssrn.com/abstract=3500090
http://dx.doi.org/10.2139/ssrn.3500090
http://dx.doi.org/10.2139/ssrn.3500090

	Summary
	Trade Representation
	General Structure
	Script Node
	Data Node
	Event
	Number
	Index
	Currency
	Daycounter
	Compact Trade XML
	Payment Currency
	Convenience Trade Wrappers
	SIMM product type deduction
	Scripting and AMC

	Scripting Language
	Whitespace
	Keywords
	Variables
	Arrays, SIZE operator
	Sorting Arrays: SORT and PERMUTE instructions
	Function DATEINDEX
	Instructions
	Index evaluation
	Comparisons == and !=
	Comparisons <, <=, >, >=
	Operations +, -, *, /
	Assignment =
	Logical Operators AND, OR, NOT
	Conditionals: IF ... THEN ... ELSE ...
	Loops: FOR ... IN ... DO
	Special variable: TODAY
	Checks: REQUIRE
	Functions min, max, pow
	Functions -, abs, exp, ln, sqrt
	Functions normalPdf, normalCdf
	Function black
	Function dcf
	Function days
	Function PAY
	Function LOGPAY
	Function NPV, NPVMEM
	Function HISTFIXING
	Function DISCOUNT
	Functions FWDCOMP and FWDAVG
	Functions ABOVEPROB, BELOWPROB

	Models
	Pricing Engine Configuration
	Product Tags und pricing engine configuration
	BlackScholes model
	LocalVolDupire, LocallVolAndreasenHuge models
	GaussianCam models
	Base Currency Determination
	Grid Coarsening
	Calibration
	FX tags and correlation curves

	Error Diagnostics and Debugging
	Errors during parsing
	Errors during runtime
	Tracing

	Implementation Details
	Static Analysis
	Script Parser
	Script Analyzer
	Script Engine
	Model

